10 research outputs found

    A Neural Network Approach for Waveform Generation and Selection with Multi-Mission Radar

    Get PDF
    Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident on the target. This capability can lead to significantly lower system design costs due to the possibility of sensitivity gains on the order of 3 dB or more compared with traditional, amplitude-modulated linear frequency modulated (LFM) waveforms. Generation of an optimal NLFM waveform, however, can be an arduous task, and may involve complex optimization and non-closed-form solutions. For a multi-mission or cognitive radar, which may utilize a wide combination of frequencies, pulse lengths, and amplitude modulations (among other factors), this could lead to an extremely large waveform table for selection. This paper takes a neural network approach to this problem by optimizing a set of over 100 waveforms spanning a wide space and using the results to interpolate the waveform possibilities to a higher resolution. A modified form of a previous NLFM method is combined with a four-hidden-layer neural network to show the integrated and peak range sidelobes of the generated waveforms across the model training space. The results are applicable to multi-mission and cognitive radars that need precise waveform specifications in rapid succession. The expected waveform generation times are addressed and quantified, and the potential applicability to multi-mission and cognitive radars is discussed

    Weather radar network benefit model for flash flood casualty reduction

    No full text
    A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash flood–based benefit of 316million(M)yr1.Theremainingbenefitpoolsaremoremodest(316 million (M) yr−1. The remaining benefit pools are more modest (13 M yr−1 for coverage improvement and $69 M yr−1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network’s effectiveness in supporting the flash flood warning decision process. ©2020 Keywords: radars/radar observations; regression analysis; economic value; flood events; geographic information systems (gis); societal impact

    Weather Radar Network Benefit Model for Tornadoes

    No full text
    A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters—fraction of vertical space observed and cross-range horizontal resolution—leads to better tornado warning performance as characterized by tornado detection probability and false-alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false-alarm ratios save costs by cutting down on work and personal time lost while taking shelter. The model is run on the existing contiguous U.S. weather radar network as well as hypothetical future configurations. Results show that the current radars provide a tornado-based benefit of ~490million(M)yr1.Theremainingbenefitpoolisabout490 million (M) yr⁻¹. The remaining benefit pool is about 260M yr⁻¹, split roughly evenly between coverage- and rapid-scanning-related gaps. Keywords: Tornadoes; Radars/Radar observations; Statistical techniques; Economic value; Geographic information systems (GIS); Societal impactsUnited States. National Oceanic and Atmospheric Administration (Contract FA8702-15-D-0001

    Weather Radar Network Benefit Model for Nontornadic Thunderstorm Wind Casualty Cost Reduction

    No full text
    AbstractAn econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of 207million(M)yr1relativetonoradarcoverageatall.Theremainingbenefitpoolwithrespecttoenhancedradarcoverageandscanupdaterateisabout207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about 36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of 1.12billionyr1forthepresentdayradarsandaremainingradarbasedbenefitpoolof1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of 778M yr−1.National Ocean and Atmospheric Administration (NOAA

    Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    No full text
    While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode) are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR). The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode), range sampling of 30 m (37.5 m native resolution), and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution). This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow

    Geospatial QPE Accuracy Dependence on Weather Radar Network Configurations

    No full text
    The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on network density, antenna aperture, and polarimetric bias. Thousands of cases from the warm-season months of May–August 2015–2017 are processed using both the specific attenuation [R(A)] and reflectivity-differential reflectivity [R(Z,ZDR)] QPE methods and are compared against Automated Surface Observing System (ASOS) rain gauge data. QPE errors are quantified based on beam height, cross-radial resolution, added polarimetric bias, and observed rainfall rate. The collected data are used to construct a support vector machine regression model that is applied to the current WSR-88D network for holistic error quantification. An analysis of the effects of polarimetric bias on flash-flood rainfall rates is presented. Rainfall rates based on 2-year/1-hr return rates are used for a CONUS-wide analysis of QPE errors in extreme rainfall situations. These errors are then re-quantified using previously proposed network design scenarios with additional radars that provide enhanced estimate capabilities. Finally, a gap-filling scenario utilizing the QPE error model, flash-flood rainfall rates, population density, and potential additional WSR-88D sites is presented, exposing the highest-benefit coverage holes in augmenting the WSR-88D network (or a future network) relative to QPE performance

    Quantification of radar QPE performance based on SENSR network design possibilities

    No full text
    In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial use. As part of this goal, the participating agencies have developed preliminary performance requirements that not only assume minimum capabilities based on legacy radars, but also recognize the need for enhancements in future radar networks. The relatively low density of the legacy radar networks, especially the WSR-88D network, had led to the goal of enhancing low-altitude weather coverage. With multiple design metrics and network possibilities still available to the SENSR agencies, the benefits of low-altitude coverage must be assessed quantitatively. This study lays the groundwork for estimating Quantitative Precipitation Estimation (QPE) differences based on network density, array size, and polarimetric bias. These factors create a pareto front of cost-benefit for QPE in a new radar network, and these results will eventually be used to determine appropriate tradeoffs for SENSR requirements. Results of this study are presented in the form of two case examples that quantify errors based on polarimetric bias and elevation, along with a description of eventual application to a national network in upcoming expansion of the work

    Science Applications of Phased Array Radars

    No full text
    Abstract Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here.Department of Defense (DoD)Department of Energy (DOE)National Aeronautics and Space Administration (NASA)National Ocean and Atmospheric Administration (NOAA)National Science Foundation (NSF
    corecore